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On a variance associated with the
distribution of general sequences

in arithmetic progressions. I
By R. C. Vaughan

Department of Mathematics, Huxley Building, Imperial College of Science,
Technology and Medicine, 180 Queen’s Gate, London SW7 2BZ, UK

An asymptotic formula of Montgomery–Hooley type is established for general se-
quences which, for relatively small moduli, are approximately equidistributed in the
reduced residue classes.

Keywords: variance; distribution; sequences; reduced residue classes

1. Introduction

In this memoir we are concerned with the development of those ideas contained in
Goldston & Vaughan (1996) that relate to more general situations. Thus we are
following the precedent set by Hooley (1975c) in which his method, first applied to
the primes in Hooley (1975a, b), is then turned and directed towards arithmetical
sequences of a rather general form.

In particular, we are interested in the extent to which it is possible to obtain an
asymptotic formula for the variance

V (x,Q) =
∑
q6Q

∑
a∈A(q)

|A(x; q, a)− f(q, a)Φ(x)|2, (1.1)

where A(q) is a suitable set of residue classes modulo q, A(x; q, a) denotes

A(x; q, a) =
∑
n6x

n≡a (mod q)

an, (1.2)

and f and Φ appropriately reflect the local and global properties, respectively, of the
real sequence {an}.

The simplest generalization from the primes, and one which can be very useful in
practice as sequences arising from a sieving procedure often meet the requirements
described below, is that in which the distribution is restricted to, and uniform within,
the reduced residue classes modulo q, at least for relatively small q. Thus, for the
purposes of this paper we take A(q) to be the set of reduced residue classes modulo q.

It is natural to suppose that Φ be fairly smooth, but as it stands all methods for
dealing with V (x,Q) require some understanding of objects such as∫ x−h

0
Φ′(y)Φ′(y + h) dy.

Even in the case of primes this leads to some technical complications and to obviate
this it is normal to consider the primes in weighted form. In order to apply weights
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782 R. C. Vaughan

properly here we make the following assumptions with regard to Φ. We suppose that
there is a real number x0 > 1 such that on [x0,∞) the function Φ is non-negative, has
continuous second deriviative, Φ′(x) > 0, Φ(x)Φ′′(x) � Φ′(x)2 and Φ′′(x) 6= 0. We
observe in passing that this implies that Φ(x)� xΦ′(x) and that there is a positive
number δ such that for all sufficiently large x we have Φ(x) > xδ. Thus, rather than
consider V in the form given above, we replace A(x; q, a) by

B(x; q, a) =
∑

x0<n6x
n≡a (mod q)

bn, (1.3)

where

bn =
an
Φ′(n)

, (1.4)

and suppose that

V (x,Q) =
∑
q6Q

q∑
a=1

∣∣∣∣B(x; q, a)− E(q, a)
x

φ(q)

∣∣∣∣2 , (1.5)

where E(q, a) is 1 or 0 according to whether (q, a) = 1 or (q, a) > 1. There would be
little point in studying this form of the variance if E(q, a)x/φ(q) were not a fairly
good approximation to B(x; q, a), at least for smaller values of q. It is natural, then,
to suppose that there is an increasing function Ψ(x), with Ψ(x) > log x for all large
x, Ψ(1) > 0 and ∫ x

1
Ψ(y)−1 dy � xΨ(x)−1,

such that

A(x; q, a) = E(q, a)
Φ(x)
φ(q)

+O(Φ(x)/Ψ(x)) (1.6)

uniformly for all real x > 1 and natural numbers q and a. Here we note that imme-
diately from the above assumptions we have Ψ(x)� x.

With the above definitions it is now possible to state a simple conclusion.

Theorem 1.1. Let

U(x,Q) = V (x,Q)−Q
∑

x0<n6x
b2n +Qx log

x

Q
+ cxQ, (1.7)

where

c = γ + log(2π) +
∑
p

log p
p(p− 1)

, (1.8)

and suppose that for all sufficiently large x we have log x 6 Ψ(x) 6 x1/2. Then
uniformly for x2/3 6 Q 6 x we have

U(x,Q)� Q3/2x1/2 +
(
x2 + x

∑
x0<n6x

b2n

)
(log 2x)3/2/

√
Ψ(x). (1.9)
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Distribution of sequences in arithmetic progression 783

By working harder, the
√
Ψ(x) undoubtedly can be replaced by Ψ(x)θ for some

θ ∈ (1
2 , 1], albeit an inflated logarithmic factor would be required in (1.9). It might

even be possible to take θ = 1.
We remark in passing that the techniques described herein would suffice just as well

to treat B(y + x; q, a) − B(y; q, a) provided that y does not grow at an appreciably
faster rate than x, and that then simple partial summation techniques could be
applied to obtain a concomitant theorem for A(x; q, a).

If one supposes further that the sequence {an} is the characteristic function of a
set, then it follows by partial summation from (1.6) with q = a = 1 that the sum
over n in (1.7) and (1.9) may be replaced by∫ x

x0

1
Φ′(y)

dy. (1.10)

Returning to (1.7), it is interesting that when Ψ(x) is at least as large as (log 2x)3+δ,
where δ is a positive constant, then the positivity of V ensures that∑

x0<n6x
b2n � x logΨ(x).

Thus, condition (1.6) ensures that the an cannot be the characteristic function of a
dense subset of the integers.

2. Simple consequences of (1.6)

We need to extract several pieces of information from the basic assumption (1.6).

Lemma 2.1. Let E(q, a) be 1 or 0 according to whether (q, a) = 1 or (q, a) > 1.
Then

B(x; q, a) = E(q, a)
x

φ(q)
+O(x/Ψ(x))

uniformly for all real x > 1 and natural numbers q and a.

Proof . This is a straightforward application of partial summation technique. We
have

B(x; q, a) =
[
A(y; q, a)
Φ′(y)

]x
x0

−
∫ x

x0

(
d
dy

(
1

Φ′(y)

))
A(y; q, a) dy.

We apply (1.6) and observe that

d
dy

(
1

Φ′(y)

)
is of fixed sign. The main terms are easily handled, and the contributions from the
error term in (1.6) to the above is

� Φ(x)
Φ′(x)Ψ(x)

+ 1 +
∫ x

x0

dy
Ψ(y)

.

The lemma then follows easily. �
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784 R. C. Vaughan

Lemma 2.2. Suppose that x1/2 < Q 6 x. Then∑
q6Q

1
φ(q)

( q∑
a=1

(a,q)=1

B(x; q, a)− x
)
�
(
x+

∑
n6x

b2n

)
(log 2x)2/Ψ(x).

Proof . We work primarily with∑
q6Q

1
φ(q)

q∑
a=1

(a,q)=1

B(x; q, a).

We invoke the definition of B(x; q, a) and observe that when summed over a reduced
set of residues a modulo q this becomes∑

x0<n6x
(a,q)=1

bn.

We then interchange the order of summation of q and n. Thus we are reduced to
treating the sum ∑

q6Q
(q,n)=1

1
φ(q)

.

This can be done elementarily as follows. We have 1/φ(q) =
∑
r|q µ(r)2/φ(r) and so

the above sum becomes ∑
r6Q

(r,n)=1

µ(r)2

rφ(r)

∑
s6Q/r
(s,n)=1

1
s
.

The inner sum here is ∑
d|n

µ(d)
d

∑
m6Q/rd

1
m
.

Here we replace the inner sum by

log
Q

rd
+ γ +O

(
rd

Q

)
.

This leads to the estimate∑
q6Q

(q,n)=1

1
φ(q)

=
∞∑
r=1

(r,n)=1

∑
d|n

µ(d)
d

(
log

Q

rd
+ γ

)
+O

(
logQ
Q

(log 2n+ d(n))
)
.

Simple manipulations then show that the main terms here are

C1

(
logQ+ C2 +

∑
p|n

f(p)
)∑

r|n
g(r),
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where

C1 =
∞∑
r=1

µ(r)2

rφ(r)
,

C2 = γ +
∑
p

log p
p2 − p+ 1

,

f(p) =
log p
p− 1

− log p
p2 − p+ 1

,

and g(r) is multiplicative, equals 0 unless r is square-free, and satisfies

g(p) = − p

p2 − p+ 1
.

In passing we observe that in the special case n = 1 we have∑
q6Q

1
φ(q)

= C1(logQ+ C2) +O

(
logQ
Q

)
. (2.1)

We apply the general case and obtain∑
q6Q

1
φ(q)

q∑
a=1

(a,q)=1

B(x; q, a) = U + V,

where

U =
∑

x0<n6x
bnC1

(
logQ+ C2 +

∑
p|n

f(p)
)∑

r|n
g(r)

and
V �

∑
n6x
|bn| logQ

Q
(log 2n+ d(n)).

By the case q = 1 of lemma 2.1 we have∑
n6x

bn � x,

when x is sufficiently large. Hence, by Cauchy’s ineqality we have both∑
n6x

b2n � x

and ∑
n6x
|bn| �

∑
n6x

b2n.

Therefore
V �

∑
n6x

b2n/Ψ(x).

With regard to U we have

U = C1(logQ+ C2)
∑
r6x

g(r)
∑

x0<n6x
r|n

bn + C1

∑
p6x

f(p)
∑
r6x

g(r)
∑

x0<n6x
[p,r]|n

bn.
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786 R. C. Vaughan

Again by lemma 2.1, the contribution from each sum over n is � x/Ψ(x), except
when r = 1 in the first sum, in which case there is an extra contribution of x.
Therefore

U = xC1(logQ+ C2) +O(x(log x)2/Ψ(x)).
By (2.1) the main term here can be replaced by

x
∑
q6Q

1
φ(q)

and then the lemma follows at once. �
It is useful to define here

G(α) =
∑

x0<n6x
bne(αn) (2.2)

and
J(β) =

∑
n6x

e(αn) (2.3)

where, as usual, e(·) = exp(2πi·). Then the next lemma follows easily be partial
summation.

Lemma 2.3. Suppose that (q, a) = 1 and α = a/q + β. Then

G(α) =
µ(q)
φ(q)

J(β) +O((1 + x|β|)qx/Ψ(x)).

3. Preliminary arrangements

We have

V (x,Q) = 2S1 − S2 + S3 + 2E +O

(∑
n6x

b2n

)
where

S1 =
∑
q6Q

∑
n6x

∑
m<n
q|n−m

bmbn, (3.1)

S2 =
∑
q6Q

x2

φ(q)
, (3.2)

S3 = Q
∑
m6x

b2m, (3.3)

E =
∑
q6Q

x

φ(q)

(
x−

q∑
a=1

(a,q)=1

B(x; q, a)
)
. (3.4)

Lemma 2.2 enables us to bound E. Thus

V (x,Q) = 2S1 − S2 + S3 +O

((
x2 + x

∑
n6x

b2n

)
(log 2x)2

Ψ(x)

)
. (3.5)

As is usual in these questions, the main part of our argument is concerned with the
sum S1.

For future reference observe that it may be supposed that x is sufficiently large.
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4. The Farey dissection and an exponential sum

This section largely imitates § 3 of Goldston & Vaughan (1996). Let

F (α) =
∑
q6Q

∑
r6x/q

e(αqr), (4.1)

and G be as in (2.2). Then, by (3.1),

S1 =
∫ 1

0
F (α)|G(α)|2 dα. (4.2)

For any arbitrary function F : N→ C we have∑
q6Q

∑
r6x/q

f(qr) =
∑
q6√x

∑
r6x/q

f(qr) +
∑
r6√x

∑
√
x<q6min(Q,x/r)

f(qr).

For convenience an expression of the kind on the right-hand side is written in the
form ∑

l6√x

( ∑
m6x/l

+
∑

√
x<m6min(Q,x/l)

)
f(lm). (4.3)

Thus

F (α) = Fq(α) +Hq(α), (4.4)

where

Fq(α) =
∑
l6√x
q|l

( ∑
m6x/l

+
∑

√
x<m6min(Q,x/l)

)
e(αlm) (4.5)

and Hq(α) is the corresponding multiple sum with q - l. On performing the inner
summation in Hq(α) we have

Hq(α)�
∑
l6√x
q-l

min(xl−1, ||αl||−1).

For a given a and q with (a, q) = 1 we put

β = α− a/q.
Then

||αl|| > ||al/q|| − |β|l
and so when

l 6
√
x, q - l and |β| 6 1

2q
−1x−1/2

we have
Hq(α)�

∑
l6√x
q-l

||al/q||−1 � (
√
xq−1 + 1)q log 2q

and so

Hq(α)� (
√
x+ q) log 2q when |β| 6 1

2q
−1x−1/2. (4.6)
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788 R. C. Vaughan

We suppose that R satisfies

2
√
x 6 R 6 1

2x (4.7)

and consider a typical interval M(q, a) associated with the element a/q of the Farey
dissection of order R, namely, when 1 6 a 6 q 6 R and (a, q) = 1,

M(q, a) =
(
a+ a−
q + q−

,
a+ a+

q + q+

]
,

where q± is defined by aq± ≡ ∓1 (mod q) and R− q < q± 6 R and a± is defined by
a± = (aq± ± 1)/q. We observe that∣∣∣∣a+ a±

q + q±
− a

q

∣∣∣∣ =
1

q(q + q±)

lies in [1/(2qR), 1/(qR)).
We have

S1 =
∑
q6R

q∑
a=1

(a,q)=1

∫
M(q,a)

F (α)|G(α)|2 dα

and ∑
q6R

q∑
a=1

(a,q)=1

∫
M(q,a)

Hq(α)|G(α)|2 dα� R(log x)
∫ 1

0
|G(α)|2 dα.

We note also that Fq(α) = 0 when q >
√
x. Hence

S1 = S4 +O

(
R log x

∑
n6x

b2n

)
, (4.8)

where

S4 =
∑
q6√x

q∑
a=1

(a,q)=1

∫
M(q,a)

Fq(α)|G(α)|2 dα. (4.9)

Let β = α− a/q. Then, by (4.5),

Fq(α)�
∑

m6√x/q
min(xq−1m−1, ||βqm||−1). (4.10)

Hence

Fq(α)� x log(2
√
x/q)

q + qx|β| (q 6 √x, |β| 6 1
2q
−1x−1/2). (4.11)

Suppose that q 6 √x and define the major arc N(q, a) by

N(q, a) =
[
a

q
− q−1(2R)−1,

a

q
+ q−1(2R)−1

]
. (4.12)

Then N(q, a) ⊂M(q, a) and for α ∈M(q, a)\N(q, a) we have

Fq(α)� R log x.
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Moreover, the same conclusion holds when α ∈ N(q, a) and q > x/R. Thus, by (4.8)
and (4.9),

S1 = S5 +O

(
R(log x)

∑
n6x

b2n

)
, (4.13)

where

S5 =
∑
q6x/R

q∑
a=1

(a,q)=1

∫
N(q,a)

Fq(α)|G(α)|2 dα. (4.14)

5. The major arcs

We do not dwell for long on the major arcs N(q, a) as the method is almost completely
standard. In view of (4.7), on each arc, if necessary, we may invoke (4.11). Moreover,
by lemma 2.3,

Fq(α)|G(α)|2 =
µ(q)2

φ(q)2Fq(β)|J(β)|2 +∆1 +∆2,

where

∆1 � x3 log x
(1 + x|β|)φ(q)Ψ(x)

,

∆2 � x3q(log x)(1 + x|β|)Ψ(x)−2,

and, as usual, α = a/q + β. Hence, by (4.12) and (4.14),

S5 = S6 +O(x3(log x)2R−1Ψ(x)−1 + x5(log x)R−3Ψ(x)−2), (5.1)

where

S6 =
∑
q6x/R

µ(q)2

φ(q)

∫
I(q)

Fq(β)|J(β)|2 dβ, (5.2)

with

I(q) = [−1
2q
−1R−1, 1

2q
−1R−1]. (5.3)

We now wish to replace each I(q) by a unit interval. It is desirable to make as much
use of (4.11) as possible, but then conditions there necessitate proceeding in two
stages. By (4.11), when

1/(2qR) 6 |β| 6 1/(2q
√
x),

the contribution from the integrand is

� log x
qφ(q)2|β|3 ,

and, by the crude estimate
Fq(β)� xq−1 log x

stemming from (4.10), when 1/(2q
√
x) 6 |β| 6 1

2 it is

� x3 log x
qφ(q)2(1 + x|β|)2 .

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/
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We may also use this latter bound to estimate the contribution when we add in the
q in the range x/R < q 6 √x. Thus, by (5.2),

S6 = S7 +O(xR log x+ x3/2(log x)2)
where

S7 =
∑
q6√x

µ(q)2

φ(q)

∫ 1/2

−1/2
Fq(β)|J(β)|2 dβ.

Thus, by (4.13) and (5.1), S1 differs from S7 by an amount which is

� R log x
∑
n6x

b2n + xR log x+ x3/2(log x)2

+ x3(log x)2R−1Ψ(x)−1 + x5(log x)R−3Ψ(x)−2.

The optimal choice for R here is

R = x(log x)1/2Ψ(x)−1/2.

Hence

S1 = S7 +O

((
x2 + x

∑
n6x

b2n

)
(log x)3/2Ψ(x)−1/2

)
. (5.4)

6. Completion of the proof of theorem 1.1

The completion of the proof now closely shadows that of Goldston & Vaughan (1996),
there being minor detail changes because we do not desire to invoke the Riemann
hypothesis. Following the details of § 7 of that paper (Goldston & Vaughan 1996) we
find first that, via (5.4),

S1 = 1
2
x2
∑
l6√x

1
φ(l)

+ 1
2xW (

√
x)− 1

2Q
2W (x/Q)

+O

((
x2 + x

∑
n6x

b2n

)
(log x)3/2Ψ(x)−1/2

)
. (6.1)

Then, by (3.1)–(3.3) and (3.5),

V (x,Q) = Q
∑
n6x

b2n + xW (
√
x)−Q2W (x/Q)− C1x

2 log
Q√
x

+O

((
x2 + x

∑
n6x

b2n

)
(log x)3/2Ψ(x)−1/2

)
, (6.2)

where

C1 =
ζ(2)ζ(3)
ζ(6)

(6.3)

and

W (X) =
∑
l6X

1
φ(l)

(X − l)2. (6.4)
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Let

C2 =
(
γ − 3

2
−
∑
p

log p
p2 − p+ 1

)
C1, (6.5)

C3 = γ + log 2π +
∑
p

log p
p(p− 1)

, (6.6)

and define

E(X) = W (X)− C1X
2 logX − C2X

2 −X logX − C3X. (6.7)

Then we would like to invoke lemma 5 of Goldston & Vaughan (1996) to bound
E(X), but the estimate given there depends on the Riemann hypothesis. However,
quite plainly, without any hypothesis it is still possible to move the relevant contour
to the line Rs = −3

2 using only standard estimates for the Riemann zeta function
(see, for example, §§ 3.5 and 3.11 of Titchmarsh (1986)). Thus we obtain

E(X) = O(X1/2). (6.8)

Indeed a small further saving could be made by penetrating the zero free region in
the critical strip of the Riemann zeta function, but this is not of great importance.

Combining (6.2), (6.7) and (6.8) now immediately gives theorem 1.1.

The author was supported by an EPSRC Senior Fellowship.
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